Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex

نویسندگان

  • Takashi Ishiuchi
  • Kazuyo Misaki
  • Shigenobu Yonemura
  • Masatoshi Takeichi
  • Takuji Tanoue
چکیده

Compartmentalization of the plasma membrane in a cell is fundamental for its proper functions. In this study, we present evidence that mammalian Fat4 and Dachsous1 cadherins regulate the apical plasma membrane organization in the embryonic cerebral cortex. In neural progenitor cells of the cortex, Fat4 and Dachsous1 were concentrated together in a cell-cell contact area positioned more apically than the adherens junction (AJ). These molecules interacted in a heterophilic fashion, affecting their respective protein levels. We further found that Fat4 associated and colocalized with the Pals1 complex. Ultrastructurally, the apical junctions of the progenitor cells comprised the AJ and a stretch of plasma membrane apposition extending apically from the AJ, which positionally corresponded to the Fat4-Dachsous1-positive zone. Depletion of Fat4 or Pals1 abolished this membrane apposition. These results highlight the importance of the Fat4-Dachsous1-Pals1 complex in organizing the apical membrane architecture of neural progenitor cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

Giant cadherins Fat and Dachsous self-bend to organize properly spaced intercellular junctions.

The cadherins Fat and Dachsous regulate cell polarity and proliferation via their heterophilic interactions at intercellular junctions. Their ectodomains are unusually large because of repetitive extracellular cadherin (EC) domains, which raises the question of how they fit in regular intercellular spaces. Cadherins typically exhibit a linear topology through the binding of Ca(2+) to the linker...

متن کامل

Drosophila lowfat, a novel modulator of Fat signaling.

The Fat-Hippo-Warts signaling network regulates both transcription and planar cell polarity. Despite its crucial importance to the normal control of growth and planar polarity, we have only a limited understanding of the mechanisms that regulate Fat. We report here the identification of a conserved cytoplasmic protein, Lowfat (Lft), as a modulator of Fat signaling. Drosophila Lft, and its human...

متن کامل

Cadherins in development: cell adhesion, sorting, and tissue morphogenesis.

Tissue morphogenesis during development is dependent on activities of the cadherin family of cell-cell adhesion proteins that includes classical cadherins, protocadherins, and atypical cadherins (Fat, Dachsous, and Flamingo). The extracellular domain of cadherins contains characteristic repeats that regulate homophilic and heterophilic interactions during adhesion and cell sorting. Although cad...

متن کامل

Regulation of PCP by the Fat signaling pathway.

Planar cell polarity (PCP) in epithelia, orthogonal to the apical-basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2009